On the rigidity of the cytoskeleton: are MAPs crosslinkers or spacers of microtubules?

نویسندگان

  • A Marx
  • J Pless
  • E M Mandelkow
  • E Mandelkow
چکیده

Microtubules are fibers of the cytoskeleton involved in mitosis, intracellular transport, motility and other functions. They contain microtubule-associated proteins (MAPs) bound to their surface which stabilize microtubules and promote their assembly. There has been a debate on additional functions of MAPs, e.g. whether MAPs crosslink microtubules and thus increase their rigidity, or whether they act as spacers between them. We have studied the packing of microtubules in the presence of MAPs by solution X-ray scattering using synchrotron radiation. Microtubules free in solution produce a scattering pattern typical of an isolated hollow cylinder, whereas tightly packed microtubules generate a pattern dominated by interparticle interference. The interference patterns are interpreted in terms of the Hosemann paracrystal concept, adapted for arrays of parallel fibers with hexagonal arrangement in the plane perpendicular to the fiber axes (Briki et al., 1998). Microtubules without MAPs can rapidly and efficiently be compressed by centrifugation, as judged by the transition from a "free microtubule" to a "packed microtubule" X-ray scattering pattern. MAPs make the microtubule array highly resistant to packing, even at high centrifugal forces. This emphasizes the role of MAPs as spacers of microtubules rather than crosslinkers. A possible function is to keep the microtubule tracks free for the approach of motor proteins carrying vesicle or organelle cargoes along microtubules.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Dynamic Behavior of Anisotropic Protein Microtubules Immersed in Cytosol Via Cooper–Naghdi Thick Shell Theory

In the present research, vibrational behavior of anisotropic protein microtubules (MTs) immersed in cytosol via Cooper–Naghdi shell model is investigated. MTs are hollow cylindrical structures in the eukaryotic cytoskeleton which surrounded by filament network. The temperature effect on vibration frequency is also taken into account by assuming temperature-dependent material properties for MTs....

متن کامل

Mitotic Microtubule Crosslinkers: Insights from Mechanistic Studies

Mitosis depends on the mitotic spindle, a subcellular protein machine that uses dynamic microtubules and mitotic motors to assemble itself and to coordinate chromosome movements. Spindle function depends critically on the interplay of microtubule polymer dynamics and the motor proteins and non-motor microtubule-associated proteins (MAPs) that crosslink adjacent microtubules. These microtubule c...

متن کامل

Redundancy and Cooperativity in the Mechanics of Compositely Crosslinked Filamentous Networks

The cytoskeleton of living cells contains many types of crosslinkers. Some crosslinkers allow energy-free rotations between filaments and others do not. The mechanical interplay between these different crosslinkers is an open issue in cytoskeletal mechanics. Therefore, we develop a theoretical framework based on rigidity percolation to study a generic filamentous system containing both stretchi...

متن کامل

Motile microtubule crosslinkers require distinct dynamic properties for correct functioning during spindle organization in Xenopus egg extract.

The organization of the microtubule cytoskeleton depends crucially on crosslinking motors that arrange microtubules in space. Kinesin-5 is such an essential motile crosslinker. It is unknown whether its organizing capacity during bipolar spindle formation depends on its characteristic kinetic properties, or whether simply crosslinking combined with any plus-end-directed motility is sufficient f...

متن کامل

Diffusible Crosslinkers Generate Directed Forces in Microtubule Networks

Cytoskeletal remodeling is essential to eukaryotic cell division and morphogenesis. The mechanical forces driving the restructuring are attributed to the action of molecular motors and the dynamics of cytoskeletal filaments, which both consume chemical energy. By contrast, non-enzymatic filament crosslinkers are regarded as mere friction-generating entities. Here, we experimentally demonstrate ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Cellular and molecular biology

دوره 46 5  شماره 

صفحات  -

تاریخ انتشار 2000